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This article examines the role of computation and

quantitative methods in modern biomedical research

to identify emerging scientific, technical, policy and

organizational trends. It identifies common concerns

and practices in the emerging community of computa-

tionally-oriented bio-scientists by reviewing a national

symposium, Digital Biology: the Emerging Paradigm,

held at the National Institutes of Health in Bethesda,

Maryland, November 6th and 7th 2003. This meeting

showed how biomedical computing promises scientific

breakthroughs that will yield significant health benefits.

Three key areas that define the emerging discipline of

digital biology are: scientific data integration, multi-

scale modeling and networked science. Each area faces

unique technical challenges and information policy

issues that must be addressed as the field matures.

Here we summarize the emergent challenges and offer

suggestions to academia, industry and government on

how best to expand the role of computation in their

scientific activities.
Introduction

A large, diverse group of scientists gathered at the National
Institutes of Health in Bethesda, Maryland last year at a
national symposium – Digital Biology: the Emerging
Paradigm (http://www.bisti.nih.gov/2003meeting/archive/
agenda.html). Attendees reported on how computers and
the technology-based processes they support are trans-
forming biomedical research. Their presentations and
deliberations revealed that today, more than ever before,
biomedical scientists are challenged to adopt advanced
quantitative and computational methods. Computers are
enabling researchers to improve data quality and labora-
tory efficiency, extend their ability to probe and model
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complex biological phenomena and enact or adjust to
fundamental changes in the conduct of science. This
broad-based ‘quickening’ of discovery driven by computers
has the potential to increase scientific breakthroughs and
health benefits from biomedical research.

At the meeting, biomedical computing was portrayed as
an emerging discipline with well-articulated interests and
promising future directions. Box 1: The promises of
biomedical computing offers some details on the potential
of digital biology. The defining interests and challenges of
digital biology can be grouped into three areas: (i)
scientific data integration; (ii) multi-scale biological
modeling and (iii) the networking of science. The sym-
posium depicted biomedical research as approaching the
point at which it is essential for scientists, administrators
and technologists to understand the promise of compu-
tational biology, acknowledge the unique challenges faced
by those using computers in biomedical research, accel-
erate the diffusion of best practices and integrate the
views of computational biologists extensively into future
programs and plans.

Data integration

Scientific data of interest to biomedical researchers are
becoming more complex, heterogeneous and voluminous.
Bottlenecks in the use of this data occur owing to our
limited capacity to control quality and integrate data from
myriad sources, to share data across multiple tasks and to
exchange data among different people and organizations.
These bottlenecks threaten productivity and efficiency in
research activities. Problems with data integration affect
all data tasks, including semantic interpretation, data
representation, modeling, data storage and query and
transaction processing. Despite increasing interest in
merging data across experiments or disciplines, it remains
difficult to gain unencumbered access to datasets that might
be usefully merged. Ultimately the pace of discovery and the
health of the biomedical research enterprise will depend on
our ability to resolve these issues and thereby extend our
ability to locate, access and use disparate data sources.

There is a pressing need for structuring biological
knowledge to enable the integration of data and databases
across domains, modalities and scales. Part of the solution
involves standards for data content and formats. Data
integration must accommodate a variety of data types
ranging from highly structured data, to complex images,
to textual data that are linguistically complex and
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Box 1. The promises of biomedical computing

Promise. Biomedical computing will permit scientists to extract

biologically meaningful information from datasets of ever-increas-

ing size, heterogeneity and complexity.

Example. Today PhysioNet [4] provides an open-source platform to

generate insights by bridging molecular- and organ-level obser-

vations to decipher large collections of recorded physiologic signals.

Promise. Computational biology will support analysis of genetic

variation in disease and drug response so clinicians can predict

individual disease risk and tailor therapies.

Example. The HapMap [5] makes disease-gene mapping practical by

reducing the genetic variants to be examined in a whole genome

scan from 10 million to 500 000.

Promise. Computational biology data and applications will be scaled

so that valuable resources and data are made available to the

broadest possible scientific community.

Example. Massive amounts of data are generated in high-through-

put fashion today that are most useful if broadly shared. Under

various Grid and cyber-infrastructure initiatives new linking and

translational middleware is the critical enabling technology that

makes geographically dispersed resources more widely available [6].

Promise. New relationships among biological and quantitative

scientists will emerge which benefit both disciplines.

Example. Mathematicians and computer scientists are finding new

methods for analyzing data and modeling biological systems. Their

findings point to new biological processes that reveal new

architectures and performance enhancements for computers.

Promise. Computers will change the conduct of clinical research.

Example. A newly launched initiative at the U.S. National Institutes

of Health – National Electronic Clinical Trials and Research (NECTAR)

– is intended to streamline clinical research and to accelerate the

pace of discovery and application of clinical findings [7].

Promise. New organizational structures will emerge.

Example. Unprecedented inter-governmental partnerships are being

created to explore new domains of enquiry and push theory in

uncharted directions. One initiative to improve methods in multi-

scale modeling, for example, [8] involves all major science agencies

of the US Federal government, NIH, National Science Foundation

(NSF), National Aeronautics and Space Administration (NASA), and

Department of Energy (DoE).
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nuanced. Data must be accommodated at various levels of
abstraction – molecular, cellular, pathway, organ and even
whole organism – and at differing stages of analysis. Data
integration must also consider the needs of many
biologists who rely on public repositories for the analysis
of diverse or novel datasets. Even using highly organized
publicly available biological databases, it is often difficult
to integrate data.

What are the challenges with integrating scientific
data? One is a lack of adequate structured vocabularies
and ontologies (computer readable vocabularies, taxo-
nomies and indexes that constitute the central concepts of
a scientific discipline) to provide a common basis for
describing content and related data. Another stems from
the absence of common formats or inter-convertible
formats that describe the data. Still another set of
challenges is posed by the heterogeneous, context-depen-
dent and extremely varied nature of biological data.
Dealing effectively with context requires multiple inter-
dependent solutions. Although some scientific disciplines
have adopted data standards to allow data integration,
most still lack common terminologies, ontologies and
repositories. Finally, new algorithms such as Bayesian
analysis must be developed that combine heterogeneous
www.sciencedirect.com
data and form unified, possibly simplified, understanding
and knowledge of scientific experiments and behavior.

Biological modeling

Modeling biological systems is another of the major
challenges facing biomedical computing. Although some
biological processes are well characterized within a
narrow time and spatial range, biology is not well
understood at the intersections between scales. Most
biological models are not scalable, for example models of
synaptic connections between neurons do not scale to
macroscopic models of the brain. The goal of multi-scale
modeling is to provide the scientific community with
rigorous, widely recognized methods and descriptive
forms to reveal the essential elements needed to simulate
complex biological processes across scales.

Similar to the challenges of data integration, multi-
scale modeling is constrained by limitations in: (i) the
schema for the acquisition, representation and measure-
ment of appropriate biological knowledge that can be
integrated with quantitative modeling and analysis
efforts; (ii) computational and theoretical modeling
methods that cross scales and that can be validated; and
(iii) computational infrastructure in which factors such as
speed, power, data standards and tools for data analysis
and visualization do not anticipate the needs of biologists.
Cultural and organizational factors also have a role in
keeping biological modeling from taking a more prominent
role in biology. There is often a lack of adequate multi-
disciplinary expertise that is required for developing
integrated systems models. There is also a lack of
mechanisms to encourage and reward mutually beneficial
collaborations between quantitative modelers and biol-
ogists. Frequently, opportunities for career advancement
and other incentives are not available to computational
and theoretical scientists in the biomedical field. Peer
review activities for biomedical modeling have large
challenges in establishing well-balanced, multidisciplin-
ary review committees as well as review criteria that
properly assess the success of model outcomes and
validation studies.

The future of modeling in digital biology will necessi-
tate the formation of multidisciplinary collaborations and
a level of cooperation that will challenge the research
community. The current move towards sharing software
and data is expected to provide a significant impetus for
the development and implementation of multi-scale
modeling. We expect that modeling and simulation of
complex biological systems across scales will have an
increasingly important role in advancing biomedical and
clinical research.

Networked science

Advances in information technology enable biomedical
sciences to collaborate more effectively, thereby promoting
a richer understanding of fundamental biological phenom-
ena. This technology can also forge a seamless pipeline of
scientific information in which the informatics of discov-
ery dovetail neatly into clinical informatics.

Biomedicine is undergoing a transformation in which
genomic tools for molecular, structural and functional
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analysis are becoming widely available and are being
applied to diverse research tasks from modeling biological
systems to clinical diagnostics. Linking basic and clinical
research through networks will permit scientists to
characterize the function of genetic networks in processes
of cellular development, health and disease. Such net-
works will require new interfaces, as well as new
translational ‘middleware’ to merge disparate data
sources into usable knowledge. This is indeed a significant
challenge. However, the synthesis of insights through
collaboration among several biomedical specialties is
certain to advance evidence-based medicine and ulti-
mately to improve care.

Today, data required for diagnosis and treatment are
acquired in very different ways, across many levels of an
organization. These data are stored in various different
formats with different standards; moreover these data
have different scales with different degrees of resolution
and noise. New requirements are arising even as we work
toward a truly effective translational medicine. Specifi-
cally, those in clinical settings are finding a need for
dealing with multi-scale, complex data and to bring data
mining, federation and other modern computer network-
ing strategies to electronic medical record keeping. These
issues are central to the NIH Roadmap effort to Reengi-
neer the Clinical Research Enterprise (http://nihroadmap.
nih.gov/clinicalresearch/index.asp) [1].

In the future, digital biology will be comprised of dense
networks of people and resources. Advances in instru-
mentation, collaboration, data query and analysis offer an
array of ways to enhance diagnosis, doctor–patient
interaction and other aspects of health care delivery.
New grid-based methods allow sharing of geographically
dispersed heterogeneous data, software algorithms and
computing resources (The 2003 Bioengineering Consor-
tium Symposium June 23rd and 24th at NIH focused on
team science and the meeting agenda, final report and
related publications can be found at http://www.becon.nih.
gov/symposium2003.htm).The NIH Biomedical Infor-
matics Research Network (BIRN) (NIH National Center
for Research Resources Biomedical Information Research
Network; www.nbirn.net) is a key example of how grid
computing teamed with web-based services can bring
informatics-based technologies closer to the scientist’s
workbench. This initiative fosters large-scale biomedical
science collaborations via emerging cyber infrastructure
(high speed networks and distributed high-performance
computing, as well as the necessary software and data
integration capabilities). The new software and hardware
technologies are sophisticated and certainly need
improvements in areas such as reliability and ease of
use. However, there is increasing awareness that technol-
ogy alone is not the barrier to effective networked science.
There is an urgent need for improved interdisciplinary
training, effective management principles for team
science, proper resolution of government’s role in large-
scale biomedical data acquisition and analysis efforts and
usable solutions to intellectual property issues of data and
software sharing and dissemination – in other words, the
sociology of networked science is a principal barrier to
progress. The Research Teams of the Future component of
www.sciencedirect.com
the NIH Roadmap is attempting to deal with some of these
issues. (http://nihroadmap.nih.gov/).

The future of digital biology

The vision of digital biology emerging among scientists
today is that of a robust computational environment that
supports wide-scale, intense scientific collaboration. The
ideal environment for digital biology supports the widest
variety of tasks – data analysis, simulation, model
building and evaluation – for multiple investigators on a
simultaneous basis. It uses models and unique represen-
tations of biological data at all levels to link theory with
practice. To support the transition of biology to its
envisioned future as a more quantitative and a predictive
science, the computational environment of digital biology
must be reliable, extensible and interoperable in ways not
yet realized.

Consider just a few scenarios for how the challenges of
data integration, modeling and scientific networks might
be addressed. First, universal data standards are unlikely
to be adopted widely in the near future, so data capture
and translation between multiple sources will demand
special attention. Second, biomedical research might be
advanced in dramatic ways by robust predictive modeling
of complex systems that are validated by iterative
interaction between experiment and theory. Third, in
addition to new technologies, digital biology will depend
on new organizational structures – for example team-
based science – as well as partnerships between scientists,
government and industry at many levels. A partial future
vision of digital biology is illustrated in Box 2: Selected
examples of best practice in computational biology.
Finally, standards and modular software might be devel-
oped to provide an interface for heterogeneous datasets
that can be used productively by biologists.

Other aspects of the future of digital biology might
include the following:

(i) Semantic interoperability

Coordinated ontologies and terminologies in biology will
be established to enable new opportunities for data
sharing and heterogeneous data integration. It is likely
that many or most research projects that generate data of
broad interest will use well-formed terminologies consist-
ent with standards advanced under the Consolidated
Health Informatics Initiative (www.whitehouse.gov/omb/
egov/gtob/health_informatics.htm). As a part of this trend,
open source software development procedures with dem-
onstration projects will proliferate to promote proof of
principle and adoption of computational algorithms in the
scientific and clinical communities. Such open source
development is a requirement for the newly funded
National Centers for Biomedical Computing. The National
Centers for Biomedical Computing are part of the NIH
Roadmap and information about the program and the first
round of funded centers is available at http://www.bisti.
nih.gov/ncbc/index.cfm.

(ii) Data services

Research data infrastructures will be developed to support
software tool development and heterogeneous data
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Box 2. Selected examples of best practice in computational

biology

1. A team of researchers from Case Western Reserve University

(Cleveland, Ohio; http://www.csuohio.edu/mims/index.htm) is com-

bining computational modeling with physiological experimentation

to understand the relationship betweenmetabolism of single human

cells and organ and whole body metabolism. This work is yielding

computer models of metabolism in liver, heart and brain that

promote evidence-based methods for clinical decision support,

including diagnosis and treatment [9].

2. An industrial team at United Devices, Inc. (Austin, Texas; http://ud.

com/rescenter/ and http://ud.com/rescenter/files/ds_smallpox.pdf)

developed technology for massive computational screening of

lead drug compounds for drugs by accessing otherwise unused

computer time in a global collaborative network of desktop

computers. Recently they reported that this work yielded new

compounds against a smallpox protein. This work will bring new

drugs into animal and human testing cheaply and quickly, yielding

more effective, less expensive drugs (United Devices, Inc. http://

www-unix.gridforum.org/7_APM/LSG.htm; www.ud.com/rescenter/

files/ds_smallpox.pdf.)

3. A team from the University of Connecticut in Storrs, Connecticut

(http://www.cbit.uchc.edu/index.html) formed the National

Resource for Cell Analysis and Modeling, a nationally accessible

computational environment for modeling cell functions. This

environment speeds the pace of research at the cellular level by

permitting researchers to readily put experimental biochemical data

in the context of a computational model of a cell to understand how

individual biochemical reactions give rise to coordinated functions

at the pathway and cellular level [10].

4. A team from Johns Hopkins University (http://www.bme.jhu.edu/

labs/levchenko) is using Monte Carlo modeling to predict biochemi-

cal signaling pathways in heart muscle cells. By using the computer-

driven random walk to simulate diffusion of signaling molecules in

the cell, it is possible to model cellular behavior in great detail, and

thus provide a more detailed view of cell signaling. Cell signaling

relates to basic and clinical research [11].

5. A team from Indiana University (http://www.indiana.edu/wneurosci/

sporns.html and http://www.indiana.edu/wcortex/robots.html) is

developing an autonomous computational robot with learning

capabilities similar to the human brain. This research is aimed at

understanding principles of brain function and also at understanding

brain function to build automated intelligent systems and robots that

can serve human needs [12].

6. A team based at Massachusetts General Hospital/Harvard Medical

School is studying malignant brain tumors as self-organizing and

adaptive biosystems. Their Tumor Complexity Modeling Project

(TCMP) uses methods from various disciplines, such as tumor

biology, bioengineering, materials science, mathematical biology,

nonlinear physics as well as computational and complex systems

science. The immediate aim of TCMP is to develop novel exper-

imental, computational, mathematical and theoretical tumor

models. The ultimate goal is to develop virtual treatment planning

devices and strategies for malignant brain tumors (http://btc.mgh.

harvard.edu/TumorModeling/)
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integration. Various data repositories will implement
software tools to allow format inter-conversions and
make data interoperable. Funded projects will routinely
make data available. Stakeholders will insist on infra-
structures and practices that maintain data for current
and future uses. Community-managed databases and
data services are probable future developments. These
will involve public–private partnerships to improve
software development and validation or to accelerate
diffusion of useful algorithms. For example, the Lung
Image Database Consortium (http://imaging.cancer.gov/
programsandresources/InformationSystems/LIDC) [2]
www.sciencedirect.com
gathers standard, annotated images that will be used for
imaging research and for a range of research, including
the development of tools for clinical decision support
(‘personalized medicine’) or population-based studies of
biomedical and scientific phenomena.
(iii) Changed publishing practices

Scientific journals will increasingly use standardized
language and document structures in research publi-
cations. Many will create companion versions of articles as
databases for context-dependent cross-querying of litera-
ture. Published reports of experimental data (including
negative experimental results) will provide new levels of
detail of protocols, so that results are reproducible.
Furthermore, articles on technology development should
gain greater acceptance in scientific journals to foster
multidisciplinary research, such as multi-scale modeling.
(iv) Multi-scale modeling

Biomedical research ultimately requires predictive mod-
eling of complex systems that is experimentally validated.
Interdisciplinary projects will look at problems across
multiple scales – for example, developing models of ion
channel mutations in the heart that can predict the
development of disease in the heart. Success in multi-scale
modeling depends on the development of novel theoretical
and computation approaches to discover new methods for
crossing the boundaries between scales. These enabling
technologies need to be developed simultaneously with
focused data collection at multiple scales for each disease
or organ system.
(v) Biomedicine-specific infrastructure

It is realistic to expect that novel solutions adopted in
specific biomedical domain problems will be incrementally
integrated with prototyped components of the Grid
infrastructure. Scientists and administrators will identify
and solve performance limitations in grid computing.
Provided the investment follows to correct these limi-
tations, the computational infrastructure to support
collaborative science will improve and the capacity to
manage and share complex, voluminous data and comput-
ing resources will be greatly enhanced.
(vi) Support for continuous learning

Education and training are needed to facilitate the
evolution of biology toward a large-scale paradigm.
Community involvement is required so that the scientific
resources made available by large-scale facilities can be
used to solve the most problems. Education is needed at
two levels: How can large-scale resources and facilities
drive scientific progress for an individual investigator? In
addition, we need to explore ways to use the tools, data
types and the associated dynamic information to gain a
higher-level understanding of the problems facing an
entire field. Concrete examples are the needs in multi-
scale modelling. It is important to train mathematical
biologists as well as biological mathematicians.
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(vii) Changes in policy and the culture of scientific

collaboration

There is a general consensus that regardless of the
physical distance between different scientists in the
community, frequent interactions and intense data shar-
ing are essential in an era of digital biology. Hence, a wide
variety of organizational and policy issues must be
addressed, including openness, data dissemination,
semantic interoperability, data integrity and validation,
protection of human data, operational efficiency, intellec-
tual property and ethics policies, such as conflict of
interest [3].

Conclusions

With the advent of genomics and proteomics, bioscientists
increasingly acknowledge the ever present need for
computers. But few biologists view computers as a
cornerstone of biology. Instead most regard computation
as a ‘black box’ and focus on data and analytical outputs,
not the machine processes by which they were generated.
The catch phrase ‘digital biology’ points to a fundamen-
tally unique future in which computers will enable
scientists to:

Exploit opportunity

To the extent that we approach biology with the proper
computer tools and methods, genomics and proteomics
will lend themselves to discrete observations and math-
ematical formulations that were not possible just a few
years ago. Our capacity for building robust models of
biological processes expands because of the new data and
will profoundly extend our questioning and perception.

Avoid problems

Focusing effort on data integration, biological modeling
and networked science along the lines outlined above will
help to avert a potential crisis owing to the complexity of
the biological systems as we are now coming to view them.
Without computational support, sciences rooted in geno-
mics and proteomics risk being hindered by the volume
and disparate nature of data to be accessed, queried and
managed.

Realize a dream

Computation and quantitative methods are at the fore-
front of life sciences research. The envisaged future would
extend human perception in the laboratory, establish the
spatial and temporal context of disease at multiple levels,
assist scientists with integration of complexity and
maintain or create new levels of efficiency in basic
discovery processes. With proper multidisciplinary effort,
computational and quantitative approaches to biomedical
research will produce scientific breakthroughs that lead to
www.sciencedirect.com
significant health benefits. As revealed through the links
in this article, computers have already extended the
capacity of physicians to diagnose and anticipate the
course of cancers, as well as diseases that affect almost all
organs of the body.

Accelerate the pace of scientific advancement

Attending to these issues now is consistent with other
recent trends such as intensifying collaboration in biology.
It opens the door for biology to draw more deliberately on
engineering and other sciences.

Many assert that we are at a crossroads where immedi-
ate, decisive action is required to achieve the full potential of
digital biology. Whatever specific steps are taken to advance
a digital future for biology, scientists should consider the
many current challenges in data integration, multi-scale
modeling and the networking of science.
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